CALIFORNIA DEBTAND INVESTMENT ADVISORY COMMISSION

BOND CASH FLOWS LITERACY INTERMEDIATE BOND MATH (PART 1)

- For technical issues, contact GoToWebinar (GoToMeeting) at 1-800-263-6317 or
http://support.citrixonline.com/gotomeeting/
- Presentation slides are available to download at http://www.treasurer.ca.gov/cdiac/webinars/2014/201408 07/description.asp
- For MCLE credit, email cdiac education@treasurer.ca.gov
- Live captioning is available at www.streamtext.net/text.aspx?event=CDIAC

```
CDIAC
```

CALIFORNIA
DEBTAND INVESTMENT
ADVISORY COMMISSION

BOND CASH FLOWS LITERACY

INTERMEDIATE BOND MATH (PART 1)

PRESENTED BY LOUIS CHOI
PUBLIC RESOURCES ADVISORY GROUP

AN INDEPENDENT REGISTERED MUNICIPAL ADVISOR (IRMA)

Topics

\square Bonds and Loans
\square How Municipal Bonds are Priced (or Valued)
\square Understanding Cash Flow Schedules
\square Debt Amortization
\square Bonus: Using Microsoft Excel Functions

Bonds and Loans

Bond cash flows literacy

 intermediate bond math (Part 1)
Bonds as Loans

An investment...

A loan...

In Aggregate, Bonds in an Issue Are Equivalent to a Loan

A Bond Issue and a Loan Are Mathematically Similar, But Not Identical

A Bond Issue:

				2.00\%	3.00\%	4.00\%	4.50\%	5.00\%		
	Principal			Interest on Principal Due					Total	Debt
Date	Balance	Principal	Coupon	5/1/2015	5/1/2016	5/1/2017	5/1/2018	5/1/2019	Interest	Service
5/1/2014	50,000,000									
5/1/2015	50,000,000	9,050,000	2.00\%	181,000	285,000	399,000	471,375	550,000	1,886,375	10,936,375
5/1/2016	40,950,000	9,500,000	3.00\%		285,000	399,000	471,375	550,000	1,705,375	11,205,375
5/1/2017	31,450,000	9,975,000	4.00\%			399,000	471,375	550,000	1,420,375	11,395,375
5/1/2018	21,475,000	10,475,000	4.50\%				471,375	550,000	1,021,375	11,496,375
5/1/2019	11,000,000	11,000,000	5.00\%					550,000	550,000	11,550,000
Total		50,000,000		181,000	570,000	1,197,000	1,885,500	2,750,000	6,583,500	56,583,500

Differences in Rates Across Maturities Generate a

State Public Works Board of the State of California

 \$152,420,000 Lease Revenue Bonds (Department of Corrections and Rehabilitation), 2014 Series CPrincipal Amounts and Initial Reoffering Yields as of April 10, 2014
\$Millions

Selected Historical Yield Curves

AAA GO MMD

Calculating Bond Prices

Bond cash flows literacy

 intermediate bond math (Part 1)
Time-Value of Money (TVM)

Calculates the value of future-day dollars in present-day dollars, and applicable to calculations for:
\square Opportunity cost
\square Inflation
\square Investments

Present Value Formula:

$>$ "PV" = Present Value
> "FV" = Future Cash Flows
>" $\mathrm{i} "=$ Interest Rate
>" p " = Compounding Periods Per Year
$>" t$ " = Time or Periods

TVM Is the Basis for Calculating Bond Prices

A stream of future cash flows, such as the periodic payment of interest and final payment of principal, follows the same approach as the sum of multiple terms

Present Value Formula for Multiple Future Cash Flows:

$$
P V=\frac{C F_{1}}{\left(1+\frac{i}{p}\right)^{t_{1}}}+\frac{C F_{2}}{\left(1+\frac{i}{p}\right)^{t_{2}}}+\ldots+\frac{C F_{n}}{\left(1+\frac{i}{p}\right)^{t_{n}}}
$$

> "PV" = Present Value, or Price
> "CF" = Future Cash Flows, which for bonds include:
\checkmark Principal
\checkmark Semi-Annual Interest
$>" i "=$ Interest Rate, or Yield
> " p" = Compounding Periods Per Year
\checkmark (Municipal Convention $=2$)
$>$ " t " = Time or Periods
\checkmark (Municipal Convention $\left.=\frac{\frac{30}{360} \text { Days }}{180}\right)$

Bond Pricing Formula

Municipal Standard Price Formula:

$$
\begin{gathered}
P=\left[\frac{R V}{\left(1+\frac{Y}{2}\right)^{\wedge}\left(N-1+\frac{E-A}{E}\right)}\right]+\left[\sum_{k=1}^{N} \frac{100 * \frac{R}{2}}{\left(1+\frac{Y}{2}\right)^{\wedge}\left(k-1+\frac{E-A}{E}\right)}\right.
\end{gathered}-\left[100 * \frac{A}{B} * R\right]
$$

> " A " $=30 / 360$ days from dated date to settlement date
> "B" = Days in the year (usually 360)
$>$ "E" = Days in semi-annual period (usually 180)
$>$ " N " = Interest payments between settlement and redemption dates
$>$ " P " = Dollar price (as a \%)
$>$ " R " = Annual coupon (as decimal)
> "RV" = Redemption value, including premiums, if any
$>$ " Y " = Yield (as decimal)

Prices Can Vary Greatly with Different Coupons and Maturities

$\square 10$-year bond with a 3% coupon at yield of 3.15%
\square 10-year bond with a 5% coupon at yield of 5.165%

Terminology:

- Par: Price = 100
- Discount: Price < 100
- Premium: Price > 100

$$
\left.\left\lfloor\frac{100}{\left.\left(1+\frac{5.165 \%}{2}\right)^{\left(20-1+\frac{180-0}{180}\right.}\right)}\right\rfloor+\sum_{k=1}^{20} \frac{100 * \frac{5 \%}{2}}{\left(1+\frac{\sqrt{5.165 \%}}{2}\right)^{n\left(k-1+\frac{180-0}{180}\right)}}\right\rfloor-\left[100 * \frac{0}{360} * 5 \%\right] \cdot 98.721
$$

Bond Prices are Commonly Expressed in Yields for Ease of Comparison

Yields help to inform consistency of pricing as terms vary

7/25/2014 AAA GO MMD

2.0\%	$\begin{aligned} & \text { C: } 4 \% \\ & 116.500 \end{aligned}$									
	Y: 1.778\%									
1.5\%	C: 4\%					$\mathrm{C}: 3 \% \quad$ Y: 2.064\%				
0.5\%	$\text { P: } 109.500 \quad \text { C: } 39$									
0.0\%										
	1	2	3	4	5	6	7	8	9	10
Yield >>	0.11\%	0.31\%	0.54\%	0.87\%	1.21\%	1.45\%	1.69\%	1.91\%	2.07\%	2.19\%
3.00\%	102.887	105.359	107.310	108.355	108.659	108.876	108.614	108.050	107.600	107.239
4.00\%	103.886	107.351	110.282	112.278	113.496	114.602	115.189	115.437	115.773	116.176
5.00\%	104.885	109.343	113.254	116.201	118.334	120.329	121.765	122.823	123.946	125.113

Bond Pricing Conventions

Using the price formula when coupon equals yield may result in a calculated price of 99.998 or 99.999

Guarantees investors that the stated yield would be achieved, regardless of whether or when the issuer exercises its option

Prices do not have to calculated for every date; instead, only first dates when redemption prices change must be checked

- Bonds where coupon equals yield are priced at 100.000 (or par)
- Prices are truncated to third place after decimal
- Ex.: price of 107.186243... becomes 107.186
- Ex.: price of 98.53293 ... becomes 98.532
\square Yields are rounded to the nearest third place after decimal
- Ex.: yield of 5.16435...\% becomes 5.164\%
- Ex.: yield of 3.18987...\% becomes 3.190\%
- For optionally callable premium bonds (i.e., coupon > yield), bonds are priced to that call date which results in the lowest price
- Ex.: 11/1/2028 maturity, 4.2% coupon, 3.15% yield, callable on $11 / 1 / 2024$ at 102, on 11/1/2025 at 101 and on 11/1/2026 at 100, and settled on 11/1/2014

Assumed Redemption Date	No. of interest periods (N)	Redemption value (RV)	Price (P)
$11 / 1 / 2024$	20	102	110.410
$11 / 1 / 2025$	22	101	110.406
$11 / 1 / 2026$	24	100	110.424
$11 / 1 / 2028$	28	100	111.813

Capital Appreciation Bonds (CAB)

Also based on TVM
formula

Note: Prices may be expressed as percentage of delivery date principal amount or final maturity amount, depending on how issuance principal is expressed
\square Interest is compounded and paid at maturity
$>$ Growth in value of a CAB is expressed as an accreted value

$$
A V_{n}=P R \times\left[1+\frac{Y}{2}\right]^{\wedge(n \times 2)}
$$

$>$ " AV_{n} " = Accreted value at period n
$>$ "PR" = Initial price (generally par)
$>$ " Y " = Yield
\square Generally, not subject to optional redemption
\square Sold in denominations such that the final accreted value of each denomination is $\$ 5,000$

Capital Appreciation Bonds (Cont'd)

Solving for an accretion table...

$$
A V_{n}=\frac{D N}{\left[1+\frac{Y}{2}\right]^{\wedge((M-n) \times 2)}}
$$

$>$ " AV_{n} " = Accreted value at period n
$>$ "DN" = Accreted value at maturity (effective denomination)
$>$ " Y " = Yield
$>$ " M " = Maturity
Example:
Delivery Date: 5/14/2014
Maturity: 5/1/2019
Yield: 3.50\%
Effective Denomination: \$5,000

Date Dale Value	
$5 / 14 / 2014$	$\$ 4,208.91$
$11 / 1 / 2014$	$4,277.21$
$5 / 1 / 2015$	$4,352.06$
$11 / 1 / 2015$	$4,428.22$
$5 / 1 / 2016$	$4,505.71$
$11 / 1 / 2016$	$4,584.56$
$5 / 1 / 2017$	$4,664.79$
$11 / 1 / 2017$	$4,746.43$
$5 / 1 / 2018$	$4,829.49$
$11 / 1 / 2018$	$4,914.00$
$5 / 1 / 2019$	$5,000.00$

Cash Flow Schedules

Bond cash flows literacy

 intermediate bond math (Part 1)
Describing a Bond Issue with Numbers

Goal: to understand how the numbers that describe

 individual bonds and a bond issue work| MLITURIIES, PRINCIPAL ANOUNTS, INTEREST RATES, YIELDS AND CUSIPS | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$28,790,000 2012B Serial Bonds | | | | | | | | | |
| Manerity Date Gune I) | Principal dmounf | Interest Bate | Hold | CISSIP' | Maburity Date Gune II | Princtipal dmauni | Interest Bate | noid | Custe ${ }^{\prime \prime}$ |
| 2015 | \$1,075,000 | 4.000\% | 0.830\% | 1306853 D 0 | 2024 | \$1,575.000 | 5.000\% | 3.010\%\% | $1306853 \mathrm{N8}$ |
| 2016 | 1,120,000 | 4.000 | 1.090 | 1306853 ES | 2025 | 1,655,000 | 5.000 | 3.2000 C | 1306853 P 3 |
| 2017 | 1.165 .000 | 4.000 | 1350 | $1300853 F 5$ | 2026 | 1.735.000 | 5.000 | 3.320 C | 1306853 Q 1 |
| 2018 | 1.210 .000 | 4.000 | 1.620 | $1306853 \mathrm{G3}$ | 2027 | 1.825.000 | 5.000 | 3.410 C | 1306853 R 9 |
| 2019 | 1,255,000 | 4.000 | 1890 | 1306853 HI | 2028 | 1,915,000 | 5.000 | 3.490 C | 130685357 |
| 2020 | 1,310.000 | 4.000 | 2.170 | 130085337 | 2029 | 2.010.000 | 5.000 | 3.570 C | 1306853 TS |
| 2021 | 1,360,000 | 5.000 | 2.400 | 1306853 K 4 | 2030 | 2,110,000 | 5000 | 3.640 C | 1306853 U 2 |
| 2022 | 1,430,000 | 5.000 | 2.570 | 1306853 L 2 | 2031 | 2,215,000 | 5.000 | 3.700 C | 1306853 VO |
| 2023 | 1,500,000 | 5.000 | 2.770 C | 1306853M0 | 2032 | 2,325,000 | 5.000 | 3.740 C | 1306853 W8 |

Estimated Sources and Uses of Funds

The proceeds to be received from the sale of the 2012B Bonds are expected to be applied as set forth below:

Estimated Sources	
Principal Amount of 2012B Bonds	\$42,050,000,00
Plus Net Original Issue Premium	3,789,642.70
Total Estimated Sources	\$45.839,642.70
Estimated Uses	
Project Account	\$39,595,000.00
Capitalized Interest ${ }^{(1)}$	5,931,575.09
Costs of Issuance ${ }^{\text {c }}$	131.795 .97
Underwriters' Discount	181.271 .64
Total Estimated Uses	\$45.839,642.70

[^0]Annual Fiscal Year Debt Service Requirements
Set forth below are the principal, interest and total debt service requirements for the 2012B Bonds, assuming no redemptions other than scheduled mandatory sinking account redemptions:

Pavment Date	2012B Bonds Principal	2012B Bonds Interest	Total 2012B Bonds Debt Service	Annual Fiscal Year Debt Service
12/1/2012		\$1,143,775.85	\$1,143,775.85	
6/1/2013		957,549.24	957,549.24	\$2,101,325.09
12/1/2013		957,575.76	957,575.76	
6/1/2014		957,549.24	957,549.24	1,915,125.00
12/1/2014		957,575.76	957,575.76	
6/1/2015	\$1,075,000	957,549.24	2,032,549.24	2,990,125.00
12/1/2015		936,075.76	936,075.76	
6/1/2016	1,120,000	936,049.24	2,056,049.24	2,992,125.00
12/1/2016		913,675.76	913,675.76	
6/1/2017	1,165,000	913,649.24	2,078,649.24	2,992,325.00
12/1/2017		890,375.76	890,375.76	
6/1/2018	1,210,000	890,349.24	2,100,349.24	2,990,725.00
12/1/2018		866,175.76	866,175.76	
6/1/2019	1,255,000	866,149.24	2,121,149.24	2,987,325.00
12/1/2019		841,075.76	841,075.76	
6/1/2020	1,310,000	841,049.24	2,151,049.24	2,992,125.00
12/1/2020		814,875.76	814,875.76	
6/1/2021	1,360,000	814,849.24	2,174,849.24	2,989,725.00
12/1/2021		780,875.76	780,875.76	
6/1/2022	1,430,000	780,849.24	2,210,849.24	2,991,725.00
12/1/2022		745,125.76	745,125.76	
6/1/2023	1,500,000	745,099.24	2,245,099.24	2,990,225.00
12/1/2023		707,625.76	707,625.76	
6/1/2024	1,575,000	707,599.24	2,282,599.24	2,990,225.00
12/1/2024		668,250.76	668,250.76	
6/1/2025	1,655,000	668,224.24	2,323,224.24	2,991,475.00
12/1/2025		626,875.76	626,875.76	
6/1/2026	1,735,000	626,849.24	2,361,849.24	2,988,725.00
12/1/2026		583,500.76	583,500.76	
6/1/2027	1,825,000	583,474.24	2,408,474.24	2,991,975.00
12/1/2027		537,875.76	537,875.76	
6/1/2028	1,915,000	$537,849.24$	2,452,849.24	2,990,725.00
12/1/2028		490,000.76	490,000.76	
6/1/2029	2,010,000	489,974.24	2,499,974.24	2,989,975.00
12/1/2029		439,750.76	439,750.76	
6/1/2030	2,110,000	439,724.24	2,549,724.24	2,989,475.00
12/1/2030		387,000.76	387,000.76	
6/1/2031	2,215,000	386,974.24	2,601,974.24	2,988,975.00
12/1/2031		331,625.76	331,625.76	
6/1/2032	2,325,000	331,599.24	2,656,599.24	2,988,225.00
12/1/2032		273,500.76	273,500.76	
6/1/2033	2,440,000	273,474.24	2,713,474.24	2,986,975.00
12/1/2033		223,173.32	223,173.32	
6/1/2034	2,545,000	223,151.68	2,768,151.68	2,991,325.00
12/1/2034		170,680.15	170,680.15	
6/1/2035	2,650,000	170,663.60	2,820,663.60	2,991,343.75
12/1/2035		116,021.25	116,021.25	
6/1/2036	2,755,000	116,010.00	2,871,010.00	2,987,031.25
12/1/2036		59,196.62	59,196.62	
6/1/2037	2,870,000	59,190.88	2,929,190.88	2,988,387.50
	\$42,050,000	\$30,737,712.59	\$72,787,712.59	572,787,712.59

Start with a Basic Loan...

			5.00%	
	Principal		Interest on	Debt
Date	Balance	Principal	Balance	Service
$5 / 1 / 2014$	$50,000,000$			
$5 / 1 / 2015$	$50,000,000$	$9,048,740$	$2,500,000$	$11,548,740$
$5 / 1 / 2016$	$40,951,260$	$9,501,177$	$2,047,563$	$11,548,740$
$5 / 1 / 2017$	$31,450,083$	$9,976,236$	$1,572,504$	$11,548,740$
$5 / 1 / 2018$	$21,473,847$	$10,475,048$	$1,073,692$	$11,548,740$
$5 / 1 / 2019$	$10,998,800$	$10,998,800$	549,940	$11,548,740$
Total		$50,000,000$	$7,743,700$	$57,743,700$

Assumptions -

- \$50,000,000 borrowed
- Repaid in 5 years
- Interest rate of 5.00\%

			5.00%	
Date	Principal		Interest on	Debt
$5 / 1 / 2014$	$50,000,000$			
$5 / 1 / 2015$	$50,000,000$	$9,050,000$	$2,500,000$	$11,550,000$
$5 / 1 / 2016$	$40,950,000$	$9,500,000$	$2,047,500$	$11,547,500$
$5 / 1 / 2017$	$31,450,000$	$9,975,000$	$1,572,500$	$11,547,500$
$5 / 1 / 2018$	$21,475,000$	$10,475,000$	$1,073,750$	$11,548,750$
$5 / 1 / 2019$	$11,000,000$	$11,000,000$	550,000	$11,550,000$
Total		$50,000,000$	$7,743,750$	$57,743,750$

Municipal bonds are generally sold (and therefore repaid) in denominations of $\$ 5,000$
...Reflect Different Interest Rates (Coupons) for

				2.00\%	3.00\%	4.00\%	5.00\%	5.00\%		
	Principal			Interest on Principal Due					Total	Debt
Date	Balance	Principal	Coupon	5/1/2015	5/1/2016	5/1/2017	5/1/2018	5/1/2019	Interest	Service
5/1/2014	50,000,000									
5/1/2015	50,000,000	9,050,000	2.00\%	181,000	285,000	399,000	523,750	550,000	1,938,750	10,988,750
5/1/2016	40,950,000	9,500,000	3.00\%		285,000	399,000	523,750	550,000	1,757,750	11,257,750
5/1/2017	31,450,000	9,975,000	4.00\%			399,000	523,750	550,000	1,472,750	11,447,750
5/1/2018	21,475,000	10,475,000	5.00\%				523,750	550,000	1,073,750	11,548,750
5/1/2019	11,000,000	11,000,000	5.00\%					550,000	550,000	11,550,000
Total		50,000,000		181,000	570,000	1,197,000	2,095,000	2,750,000	6,793,000	56,793,000

Or in the more familiar form below:

	Principal			Total	Debt
Date	Balance	Principal	Coupon	Interest	Service
$5 / 1 / 2014$	$50,000,000$				
$5 / 1 / 2015$	$50,000,000$	$9,050,000$	2.00%	$1,938,750$	$10,988,750$
$5 / 1 / 2016$	$40,950,000$	$9,500,000$	3.00%	$1,757,750$	$11,257,750$
$5 / 1 / 2017$	$31,450,000$	$9,975,000$	4.00%	$1,472,750$	$11,447,750$
$5 / 1 / 2018$	$21,475,000$	$10,475,000$	5.00%	$1,073,750$	$11,548,750$
$5 / 1 / 2019$	$11,000,000$	$11,000,000$	5.00%	550,000	$11,550,000$
Total		$50,000,000$		$6,793,000$	$56,793,000$

...Adjust Principal of Each Maturity to Achieve

				2.00\%	3.00\%	4.00\%	5.00\%	5.00\%		
	Principal			Interest on Principal Due					Total	Debt
Date	Balance	Principal	Coupon	5/1/2015	5/1/2016	5/1/2017	5/1/2018	5/1/2019	Interest	Service
5/1/2014	50,000,000									
5/1/2015	50,000,000	9,415,000	2.00\%	188,300	288,150	395,600	514,500	540,000	1,926,550	11,341,550
5/1/2016	40,585,000	9,605,000	3.00\%		288,150	395,600	514,500	540,000	1,738,250	11,343,250
5/1/2017	30,980,000	9,890,000	4.00\%			395,600	514,500	540,000	1,450,100	11,340,100
5/1/2018	21,090,000	10,290,000	5.00\%				514,500	540,000	1,054,500	11,344,500
5/1/2019	10,800,000	10,800,000	5.00\%					540,000	540,000	11,340,000
Total		50,000,000		188,300	576,300	1,186,800	2,058,000	2,700,000	6,709,400	56,709,400

Once again, or in the more familiar form below:

	Principal			Total	Debt
Date	Balance	Principal	Coupon	Interest	Service
$5 / 1 / 2014$	$50,000,000$				
$5 / 1 / 2015$	$50,000,000$	$9,415,000$	2.00%	$1,926,550$	$11,341,550$
$5 / 1 / 2016$	$40,585,000$	$9,605,000$	3.00%	$1,738,250$	$11,343,250$
$5 / 1 / 2017$	$30,980,000$	$9,890,000$	4.00%	$1,450,100$	$11,340,100$
$5 / 1 / 2018$	$21,090,000$	$10,290,000$	5.00%	$1,054,500$	$11,344,500$
$5 / 1 / 2019$	$10,800,000$	$10,800,000$	5.00%	540,000	$11,340,000$
Total	$50,000,000$		$6,709,400$	$56,709,400$	

...Introduce Prices, Yields and Proceeds...

	Principal							
Date	Balance	Principal	Coupon	Interest	Service	Yield	Price	Proceeds
$5 / 1 / 2014$	$50,000,000$							
$5 / 1 / 2015$	$50,000,000$	$9,415,000$	2.00%	$1,926,550$	$11,341,550$	1.00%	100.992	$9,508,397$
$5 / 1 / 2016$	$40,585,000$	$9,605,000$	3.00%	$1,738,250$	$11,343,250$	1.75%	102.446	$9,839,938$
$5 / 1 / 2017$	$30,980,000$	$9,890,000$	4.00%	$1,450,100$	$11,340,100$	2.25%	105.049	$10,389,346$
$5 / 1 / 2018$	$21,090,000$	$10,290,000$	5.00%	$1,054,500$	$11,344,500$	2.75%	108.467	$11,161,254$
$5 / 1 / 2019$	$10,800,000$	$10,800,000$	5.00%	540,000	$11,340,000$	3.10%	108.737	$11,743,596$
Total		$50,000,000$		$6,709,400$	$56,709,400$			$52,642,532$

Each maturity generates proceeds equal to the product of its price and its principal.

Note: Prices are calculated following all of the rules discussed above.
...Calculate Purchase Price...

...Add in Sources and Uses Components...

Notes: Reserve fund is generally equal to the least of: 10% of proceeds, maximum annual debt service (MADS) and 125% of average annual debt service. Contingency is a positive number that is less than the minimum denomination, adjusted by the prices of the bonds

	Principal			Total	Debt				Takedown	Takedown
Date	Balance	Principal	Coupon	Interest	Service	Yield	Price	Proceeds	(\$/\$1,000)	(\$)
5/1/2014	50,000,000									
5/1/2015	50,000,000	9,820,000	2.00\%	2,009,200	11,829,200	1.00\%	100.992	9,917,414	1.00	9,820
5/1/2016	40,180,000	10,015,000	3.00\%	1,812,800	11,827,800	1.75\%	102.446	10,259,967	2.50	25,038
5/1/2017	30,165,000	10,315,000	4.00\%	1,512,350	11,827,350	2.25\%	105.049	10,835,804	2.50	25,788
5/1/2018	19,850,000	10,730,000	5.00\%	1,099,750	11,829,750	2.75\%	108.467	11,638,509	3.75	40,238
5/1/2019	9,120,000	11,265,000	5.00\%	563,250	11,828,250	3.10\%	108.737	12,249,223	3.75	42,244
Total		52,145,000		6,997,350	59,142,350			54,900,918		143,126
Sources of Funds			V		Principal			52,145,000		
Principal			52,145,000	$\leftarrow \frac{\text { Net Original Issue Premiu }}{\text { Production }}$				2,755,918		
Net OIP / (OID)			2,755,918					54,900,918		
Funds on Hand			1,000,000		Underwriter's Discount			-168,162		
Total Sources of Funds			55,900,918		Purchase Price			54,732,756		
Uses of Funds					Underwriter's Discount					
Project Deposit			50,000,000		Takedown			143,126		
Reserve Fund			5,490,092		Underwriter's Counsel			15,000		
Costs of Issuance			240,000		CDIAC			3,000		
Underwriter's Discount			168,162		CUSIP			600		
Contingency			2,664		Day Loan			1,525		
Total Uses of Funds		\rightarrow	55,900,918		Dalcomp			3,911		
				Dalnet			500			
				DTC			500			
				Total Uses of Funds			168,162			

Note: Contingency should be greater than zero, but less than one denomination of the issued bond, after accounting for the prices of the bonds.

How to Calculate the "Yield" of a Bond Issue

Find the rate as the internal rate of return (IRR) of debt service to the target value

Note: Debt service may be required to be adjusted for bonds subject to redemption, when calculating the arbitrage yield

Arbitrage yield, true interest cost (TIC) and all-in TIC each represent a way to express the cost of capital for a bond issue

How to Calculate an "Average"

In general, averages are calculated as weighted averages by principal

Debt Amortization

Bond cash flows literacy

 intermediate bond math (Part 1)
Common Amortization Structures

Level Principal:

- Ease of calculation
- Common for bank product termout provisions and GOs
- Interest/principal ratio: 0.77 (based on 5\% rate)

Level Debt Service:

- Even distribution of cost
- Simplify long-term budget preparation
- Interest/principal ratio: 0.95 (based on 5\% rate)

Common Amortization Structures

Deferred Principal:

- Revenues or operational cost savings become available at the later date (e.g. upon project completion)
- Interest/principal ratio: 0.99 (based on 5\% rate)

Ascending Debt Service:

- Growing revenues
- Cost-recovery mechanism is subject to inflation
- Interest/principal ratio: 1.10 (based on 5\% rate and 2\% annual growth)

Common Amortization Structures

Backloaded Principal:

- Type of bond has the lowest expected cost of funds (e.g., floating rate or tax credit bonds)
- Interest/principal ratio: 1.25 (based on 5\% rate, for THIS example)

Solving for Amortization Structure

Debt service is equal to the sum of:

- Principal;
- Interest on principal due; and
- Interest on principal still outstanding

Debt Service for a given year:

$$
D S_{n}=\left(1+C_{n}\right) \times P_{n}+\sum_{i=n+1}^{\top} P_{i} \times C_{i}
$$

$>{ }^{\prime D S_{n}}{ }^{\prime}$ = Debt service for year n
$>{ }^{\prime} \mathrm{P}_{\mathrm{n}}$ " = Principal amount for maturity n
$>$ " C_{n} " = Coupon for maturity n

Solving algebraically for principal results in the following:

$$
P_{n}=\frac{D S_{n}-\sum_{i=n+1}^{`} P_{i} \times C_{i}}{1+C_{n}}
$$

Given target debt service numbers, each principal amount can be solved

Solving for Amortization Structure

No unknowns!

Begin from the last maturity...

Example:
Target debt service: \$5,000,000
Coupon for 2024 (last maturity): 5.00\%

$$
\begin{aligned}
& P_{2018}=\$ 4,761,904.80 \quad \text { or round down to } \\
& P_{2018}=\$ 4,760,000.00
\end{aligned}
$$

Difference
between

Year	Target Debt Service	Principal	Coupon	Interest	Debt Service	Target and Actual D/S
2015	$\$ 5,000,000$	$? ? ? ?$	3.00%	238,000	238,000	$4,762,000$
2016	$\$ 5,000,000$	$? ? ? ?$	3.00%	238,000	238,000	$4,762,000$
2017	$\$ 5,000,000$	$? ? ? ?$	3.50%	238,000	238,000	$4,762,000$
2018	$\$ 5,000,000$	$? ? ? ?$	5.00%	238,000	238,000	$4,762,000$
2019	$\$ 5,000,000$	$? ? ? ?$	5.00%	238,000	238,000	$4,762,000$
2020	$\$ 5,000,000$	$? ? ? ?$	5.00%	238,000	238,000	$4,762,000$
2021	$\$ 5,000,000$	$? ? ? ?$	5.00%	238,000	238,000	$4,762,000$
2022	$\$ 5,000,000$	$? ? ? ?$	4.75%	238,000	238,000	$4,762,000$
2023	$\$ 5,000,000$	$? ? ? ?$	4.75%	238,000	238,000	$4,762,000$
2024	$\$ 5,000,000$	$4,760,000$	5.00%	238,000	$4,998,000$	2,000
Total	$\$ 50,000,000$	$4,760,000$		$2,380,000$	$7,140,000$	$42,860,000$

Solving for Amortization Structure (Cont'd)

...only one unknown...
...which was just solved in the last step!
\square...Continue with next to last maturity...
Example:
Target debt service : \$5,000,000
Coupon for 2023 (next to last maturity): 4.75\%
Principal for 2024 (last maturity): \$4,760,000
Coupon for 2024 (last maturity): 5.00\%

$$
P_{2017}=\frac{\$ 5,000,000-\$ 4,760,000 \times 5.00 \%}{1+4.75 \%}
$$

$P_{2017}=\$ 4,546,062.05$ or round down to
$P_{2017}=\$ 4,545,000.00$
Difference between

Year	Target Debt Service	Principal	Coupon	Interest	Debt Service	Target and Actual D/S
2015	$\$ 5,000,000$	$? ? ? ?$	3.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2016	$\$ 5,000,000$	$? ? ? ?$	3.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2017	$\$ 5,000,000$	$? ? ? ?$	3.50%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2018	$\$ 5,000,000$	$? ? ? ?$	5.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2019	$\$ 5,000,000$	$? ? ? ?$	5.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2020	$\$ 5,000,000$	$? ? ? ?$	5.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2021	$\$ 5,000,000$	$? ? ? ?$	5.00%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2022	$\$ 5,000,000$	$? ? ? ?$	4.75%	$\$ 453,888$	$\$ 453,888$	$\$ 4,546,113$
2023	$\$ 5,000,000$	$\$ 4,545,000$	4.75%	$\$ 453,888$	$\$ 4,998,888$	$\$ 1,113$
2024	$\$ 5,000,000$	$\$ 4,760,000$	5.00%	$\$ 238,000$	$\$ 4,998,000$	$\$ 2,000$
Total	$\$ 50,000,000$	$\$ 9,305,000$		$\$ 4,322,988$	$\$ 13,627,988$	$\$ 36,372,013$

Solving for Amortization Structure (Cont'd)

Remaining unknowns
will be solved just in
time as well
\square...And so forth
$\left.\begin{array}{cccccrr}\text { Year } & \text { Target Debt } & \text { Service } & \text { Principal } & \text { Coupon } & \text { Interest } & \text { Debt Service }\end{array} \begin{array}{c}\text { Difference } \\ \text { between } \\ \text { Target and } \\ \text { Actual D/S }\end{array}\right]$

Adjusting for Target Proceeds

If there is too much
principal (or if there are too many proceeds), reduce target debt service

If there is too little principal (or if there are too few proceeds), increase target debt service

To solve for a target par or proceeds amount:
> Make an initial guess for target debt service
> Rescale accordingly

$$
D S_{T, 1}=\frac{D S_{T, 0} \times P_{T}}{P_{0}}
$$

\checkmark " $\mathrm{DS}_{\mathrm{T}, 1}$ " $=$ New target debt service
\checkmark " $\mathrm{DST}_{\mathrm{T}, 0}$ " $=$ Initial target debt service
\checkmark " P_{T} " = Target par amount
\checkmark " P_{0} " = Par amount from initial target debt service
$>$ Iterate, if necessary

$$
D S_{T, n}=\frac{D S_{T, n-1} \times P_{T}}{P_{n-1}}
$$

$>$ It may be necessary to adjust by taking the average when within one denomination

$$
D S_{T, n}=\left(\frac{D S_{T, n-1}}{P_{n-1}}+\frac{D S_{T, n-2}}{P_{n-2}}\right) \times \frac{P_{T}}{2}
$$

Adjusting for Target Proceeds (Cont'd)

Example:

Target principal: \$40,000,000
Coupons: As shown below
Initial target debt service: \$5,000,000
Difference
between
Target and

Year	Service	Principal	Coupon	Interest	Debt Service	Actual D/S
2015	$\$ 5,000,000$	$\$ 3,250,000$	3.00%	$\$ 1,747,400$	$\$ 4,997,400$	$\$ 2,600$
2016	$\$ 5,000,000$	$\$ 3,345,000$	3.00%	$\$ 1,649,900$	$\$ 4,994,900$	$\$ 5,100$
2017	$\$ 5,000,000$	$\$ 3,450,000$	3.50%	$\$ 1,549,550$	$\$ 4,999,550$	$\$ 450$
2018	$\$ 5,000,000$	$\$ 3,570,000$	5.00%	$\$ 1,428,800$	$\$ 4,998,800$	$\$ 1,200$
2019	$\$ 5,000,000$	$\$ 3,745,000$	5.00%	$\$ 1,250,300$	$\$ 4,995,300$	$\$ 4,700$
2020	$\$ 5,000,000$	$\$ 3,935,000$	5.00%	$\$ 1,063,050$	$\$ 4,998,050$	$\$ 1,950$
2021	$\$ 5,000,000$	$\$ 4,130,000$	5.00%	$\$ 866,300$	$\$ 4,996,300$	$\$ 3,700$
2022	$\$ 5,000,000$	$\$ 4,335,000$	4.75%	$\$ 659,800$	$\$ 4,994,800$	$\$ 5,200$
2023	$\$ 5,000,000$	$\$ 4,545,000$	4.75%	$\$ 453,888$	$\$ 4,998,888$	$\$ 1,113$
2024	$\$ 5,000,000$	$\$ 4,760,000$	5.00%	$\$ 238,000$	$\$ 4,998,000$	$\$ 2,000$
Total	$\$ 50,000,000$	$\$ 39,065,000$		$\$ 10,906,988$	$\$ 49,971,988$	$\$ 28,013$

$D S_{T, 1}=\frac{\$ 5,000,000 \times \$ 40,000,000}{\$ 39,065,000}$
$D S_{T, 1}=\$ 5,119,672.34$

Adjusting for Target Proceeds (Cont'd)

Example (cont'd):

Target principal: \$40,000,000
Coupons: As shown below
Initial target debt service: \$5,000,000
Second target debt service: \$5,119,672.34
Difference between

Year	Target Debt Service	Principal	Coupon	Interest	Debt Service	Target and Actual D/S
2015	\$5,119,672	\$3,330,000	3.00\%	\$1,789,375	\$5,119,375	\$297
2016	\$5,119,672	\$3,430,000	3.00\%	\$1,689,475	\$5,119,475	\$197
2017	\$5,119,672	\$3,530,000	3.50\%	\$1,586,575	\$5,116,575	\$3,097
2018	\$5,119,672	\$3,655,000	5.00\%	\$1,463,025	\$5,118,025	\$1,647
2019	\$5,119,672	\$3,835,000	5.00\%	\$1,280,275	\$5,115,275	\$4,397
2020	\$5,119,672	\$4,030,000	5.00\%	\$1,088,525	\$5,118,525	\$1,147
2021	\$5,119,672	\$4,230,000	5.00\%	\$887,025	\$5,117,025	\$2,647
2022	\$5,119,672	\$4,440,000	4.75\%	\$675,525	\$5,115,525	\$4,147
2023	\$5,119,672	\$4,650,000	4.75\%	\$464,625	\$5,114,625	\$5,047
2024	\$5,119,672	\$4,875,000	5.00\%	\$243,750	\$5,118,750	\$922
Total	\$51,196,723	\$40,005,000		\$11,168,175	\$51,173,175	\$23,548

Attempt	Target Debt Service	Resultant Principal	Solution Method
1	$\$ 5,000,000.00$	$\$ 39,065,000.00$	Rescale
2	$5,119,672.34$	$40,005,000.00$	Rescale
3	$5,119,032.46$	$39,995,000.00$	Rescale
4	$5,119,352.40$	$40,000,000.00$	Average

Bonus: Excel Functions

Bond cash flows literacy

 intermediate bond math (Part 1)
Using PRICE()

\square Needs to be supplemented for:

- Par bonds;
- Rounding; and
- Call provisions for premium bonds
\square Effective form for bonds callable at par is as follows:

	A	B
1	Delivery	$5 / 14 / 2014$
2	Maturity	$5 / 1 / 2028$
3	Coupon	5.00%
4	Yield	3.65%
5	Call Date 1	$5 / 1 / 2024$
6	Call Price 1	100

$=\operatorname{IF}(B 3=B 4,100, \operatorname{TRUNC}(\operatorname{PRICE}(B 1, \operatorname{IF}(A N D(B 3>B 4, B 2>B 5), B 5, B 2), B 3, B 4,100,2), 3))$

Check for par bond

Using PRICE()

\square For bonds with multiple call prices, must evaluate result for each case

$$
\begin{aligned}
& =I F(B 3=B 4,100, T R U N C(M I N(\\
& P R I C E(B 1, B 2, B 3, B 4,100,2), \quad \operatorname{PRICE}(B 1, \\
& B 5, B 3, B 4, B 6,2), \\
& \\
& \quad \operatorname{PRICE}(B 1, B 7, B 3, B 4, B 8,2), \\
& \\
& P R I C E(B 1, B 9, B 3, B 4, B 10,2),
\end{aligned}
$$

Using EDATE() and EOMONTH()

\square Used to create regularly aligned dates for principal amortization or debt service schedules

		A	B	C	D
	1	Date	Principal	Coupon	Interest
	2	5/14/2014			
$=E O M O N T H(A 2,5)+1$		11/1/2014			\$44,394.17
	4	5/1/2015	\$1,000,000	2.00\%	47,850.00
	5	11/1/2015			37,850.00
	6	5/1/2016	1,050,000	3.00\%	37,850.00
$=E D A T E(A 6,6)$	$\xrightarrow{\square} \quad 11 / 1 / 2016$				22,100.00
	8	5/1/2017	1,105,000	4.00\%	22,100.00

Using SUMPRODUCT()

\square Used to calculate interest for entire bond series (with multiple coupons and principal amounts)

- Tip: Values in last cells must not be blank

	A	B	C	D
1	Date	Principal	Coupon	Interest
2	$5 / 14 / 2014$			
3	$11 / 1 / 2014$			$\$ 44,394.17$
4	$5 / 1 / 2015$	$\$ 1,000,000$	2.00%	$47,850.00$
5	$11 / 1 / 2015$			$37,850.00$
6	$5 / 1 / 2016$	$1,050,000$	3.00%	$37,850.00$
7	$11 / 1 / 2016$			$22,100.00$
8	$5 / 1 / 2017$	$1,105,000$	4.00%	$22,100.00$

$=$ SUMPRODUCT(B6:B\$8,C6:C\$8)/2

Using YEARFRAC()

\square Used to calculate interest for irregular periods and for ACT/ACT day count basis

- Tip: Allows for the same formula to be used the cash flow schedule

	A	B	C	D
1	Date	Principal	Coupon	Interest
2	$5 / 14 / 2014$			
3	$11 / 1 / 2014$			$\$ 44,394.17$
4	$5 / 1 / 2015$	$\$ 1,000,000$	2.00%	$47,850.00$
5	$11 / 1 / 2015$			$37,850.00$
6	$5 / 1 / 2016$	$1,050,000$	3.00%	$37,850.00$
7	$11 / 1 / 2016$			$22,100.00$
8	$5 / 1 / 2017$	$1,105,000$	4.00%	$22,100.00$

$=$ SUMPRODUCT(B3:B\$8,C3:C\$8)*YEARFRAC(A2,A3)

Questions?

Thank you for your participation!

A Certificate of Attendance will be emailed to you within a week.
For MCLE credit, please email cdiac education@treasurer.ca.gov
The video and transcript of this webinar will be available on CDIAC's website in the near future. Please, contact CDIAC if you would like to be notified when they are posted.

[^0]: ${ }^{(1)}$ Finded to pay minerest on the 20128 Bonds to the date witch is tiree montis gfter the expected constmetion completion date for tive 20128 Project.

