CALIFORNIA
DEBTAND INVESTMENT
ADVISORY COMMISSION

ECONOMICS AND STRUCTURES

INTERMEDIATE BOND MATH (PART 2)

PRESENTED BY LOUIS CHOI
PUBLIC RESOURCES ADVISORY GROUP

AN INDEPENDENT REGISTERED MUNICIPAL ADVISOR (IRMA)
\square How Do Refundings Work?

- Economics of Callable Bonds
\square Non-Callable Bonds
\square CABs and Convertible CABs
\square Bonus: Valuing Call Options

How Do Refundings Work?

Economics and structures

 intermediate bond math (Part 2)
Refinancing for Savings

Starting with a Loan...

Assumptions -

- \$50,000,000 outstanding balance
- Repaid in 5 years
- Original interest rate of 5.00\%; new interest rate of 4.00\%
- Refinancing fees of $\$ 500,000$ for new loan

	Original Loan		
	5.00%		Debt
Date	Principal	Interest	Service
$5 / 1 / 2014$			
$5 / 1 / 2015$	$9,048,740$	$2,500,000$	$11,548,740$
$5 / 1 / 2016$	$9,501,177$	$2,047,563$	$11,548,740$
$5 / 1 / 2017$	$9,976,236$	$1,572,504$	$11,548,740$
$5 / 1 / 2018$	$10,475,048$	$1,073,692$	$11,548,740$
$5 / 1 / 2019$	$10,998,800$	549,940	$11,548,740$
Total	$50,000,000$	$7,743,700$	$57,743,700$

New Loan			
	3.00\%	Debt	
Principal	Interest	Service	Savings
9,511,906	1,515,000	11,026,906	,
9,797,263	1,229,643	11,026,906	521,834
10,091,181	935,725	11,026,906	521,834
10,393,916	632,990	11,026,906	521,834
10,705,734	321,172	11,026,906	521,834
50,500,000	4,634,529	55,134,529	2,609,179

- Higher new principal amount to cover closing costs
- Difference in interest produce savings

	Original Loan				
Date	Principal	Coupon	Interest	Service	
$5 / 1 / 2014$					
$5 / 1 / 2015$	$9,120,000$	4.50%	$2,381,850$	$11,501,850$	
$5 / 1 / 2016$	$9,530,000$	4.50%	$1,971,450$	$11,501,450$	
$5 / 1 / 2017$	$9,960,000$	4.75%	$1,542,600$	$11,502,600$	
$5 / 1 / 2018$	$10,435,000$	5.00%	$1,069,500$	$11,504,500$	
$5 / 1 / 2019$	$10,955,000$	5.00%	547,750	$11,502,750$	
Total	$50,000,000$		$7,513,150$	$57,513,150$	

New Loan								
			Debt					
Principal	Coupon	Interest	Service	Yield	Proceeds		Savings	
$9,625,000$	2.00%	$1,264,675$	$10,889,675$	2.00%	$9,625,000$		612,175	
$9,820,000$	2.25%	$1,072,175$	$10,892,175$	2.25%	$9,820,000$		609,275	
$10,040,000$	2.50%	851,225	$10,891,225$	2.50%	$10,040,000$		611,375	
$10,290,000$	2.75%	600,225	$10,890,225$	2.75%	$10,290,000$		614,275	
$10,575,000$	3.00%	317,250	$10,892,250$	3.00%	$10,575,000$		610,500	
$50,350,000$		$4,105,550$	$54,455,550$		$50,350,000$		$3,057,600$	

Sources of Funds		
Principal		
Net OIP / (OID)		00
Total Sources of Funds		$50,350,000$
Uses of Funds		
Original Principal Repayment	$50,000,000$	
Costs of Issuance		225,000
Underwriter's Discount		121,200
Contingency	3,800	
Total Uses of Funds		$50,350,000$

Steps:

- Round principal amounts by denomination
- Introduce multiple interest rates (i.e., coupons)
- Calculate proceeds, costs of issuance and underwriter's discount
- Adjust principal of each maturity to target proceeds
[Hint: See slides 21 to 27 of Intermediate Bond Math 1]
...Adjusting Coupons...

	Original Loan			
				Debt
Date	Principal	Coupon	Interest	Service
$5 / 1 / 2014$				
$5 / 1 / 2015$	$9,120,000$	4.50%	$2,381,850$	$11,501,850$
$5 / 1 / 2016$	$9,530,000$	4.50%	$1,971,450$	$11,501,450$
$5 / 1 / 2017$	$9,960,000$	4.75%	$1,542,600$	$11,502,600$
$5 / 1 / 2018$	$10,435,000$	5.00%	$1,069,500$	$11,504,500$
$5 / 1 / 2019$	$10,955,000$	5.00%	547,750	$11,502,750$
Total	$50,000,000$		$7,513,150$	$57,513,150$

New Loan							

Sources of Funds		
Principal		$46,880,000$
Net OIP / (OID)	$3,461,850$	
Total Sources of Funds		$50,341,850$
Uses of Funds		
Original Principal Repayment	$50,000,000$	
Costs of Issuance	225,000	
Underwriter's Discount	114,260	
Contingency	2,590	
Total Uses of Funds		$\underline{50,341,850}$

Observations

- Yields, rather than coupons, are the primary driver of savings generated in a refunding
- Increasing coupons raise prices, allowing for the issuance of less principal, reducing refunding debt service and preserving savings

...Calculating Net Present Value Savings...

	Original Loan			
				Debt
Date	Principal	Coupon	Interest	Service
5/1/2014				
5/1/2015	9,120,000	4.50\%	2,381,850	11,501,850
5/1/2016	9,530,000	4.50\%	1,971,450	11,501,450
5/1/2017	9,960,000	4.75\%	1,542,600	11,502,600
5/1/2018	10,435,000	5.00\%	1,069,500	11,504,500
5/1/2019	10,955,000	5.00\%	547,750	11,502,750
Total	50,000,000		7,513,150	57,513,150

New Loan					
			Debt		
Principal	Coupon	Interest	Service	Yield	Proceeds
$7,255,000$	5.00%	$2,071,738$	$9,326,738$	2.00%	$7,469,385$
$7,620,000$	5.00%	$1,708,988$	$9,328,988$	2.25%	$8,027,518$
$8,005,000$	5.25%	$1,327,988$	$9,332,988$	2.50%	$8,637,395$
$8,425,000$	5.25%	907,725	$9,332,725$	2.75%	$9,217,624$
$8,865,000$	5.25%	465,413	$9,330,413$	3.00%	$9,784,655$
$40,170,000$		$6,481,850$	$46,651,850$		$43,136,577$

Savings	Present Value of Savings
$2,175,113$	$2,099,945$
$2,172,463$	$2,021,848$
$2,169,613$	$1,946,470$
$2,171,775$	$1,878,190$
$2,172,338$	$1,810,767$
$10,861,300$	$9,757,220$

Sources of Funds		Present Value of Cash Flow Savings		9,757,220	
Principal	40,170,000	less:			Savings Adjustments
Net OIP / (OID)	2,966,577	Original Funds on Hand llsed \longrightarrow		-11,504,500	
Original Funds on Hand	11,504,500	plus:			- Any funds contributed into
Total Sources of Funds	54,641,077	New Reserve Fund		4,313,658	
		Contingency Net Present Value Savings \longrightarrow		1,579	
Uses of Funds				2,567,957	or generated by the
Original Principal Repayment	50,000,000	NPV Savings 25\% of Original Principal			refunding must be included
	4,313,658			5.14\%	
Costs of Issuance	225,000	,			- Cash flow savings must be
Underwriter's Discount	100,840				translated to delivery-date
Total Uses of Funds	1,579				
	54,641,077				dollars using "time value of
					money" approach*

* Discounting follows municipal bond conventions using 30/360-day count and semi-annual compounding and is typically done at the arbitrage yield [Hint: see slide 26 of Intermediate Bond Math 1]

Advance Refunding

What is it?

- A refunding in which the new bonds are delivered more than 90 days in advance of the call date of the old (refunded) bonds
- An escrow needs to be established to fund principal and interest due on the old bonds
- Note: There are special IRS rules related to advance refundings

...and Calculating Escrow Requirements and Escrow Cost

	Original Loan			
				Debt
Date	Principal	Coupon	Interest	Service
5/1/2014				
5/1/2015	9,120,000	4.50\%	2,381,850	11,501,850
5/1/2016	9,530,000	4.50\%	1,97\|1,450	11,501,450
5/1/2017	9,960,000	4.75\%	1,542,600	11,502,600
5/1/2018	10,435,000	5.00\%	1,069,500	11,504,500
5/1/2019	10,955,000	5.00\%	547,750	11,502,750
Total	50,000,000		7,513,150	57,513,150
Date	Redeemed Princ pal		Inter est	Escrow Requirement
5/1/2014			\checkmark	
11/1/2014	\downarrow		1,190,925	1,190,925
5/1/2015	50,000,000		1,190,925	51,190,925
Total	50,000,000		2,381,850	52,381,850

Observations:

- Escrow inefficiency reduces savings
- Including non-callable bonds also reduce savings

Estimating Refunding Savings

- Understanding refunding cash flows and that TVM is the basis for pricing bonds, it is possible to estimate savings by combining two price functions
- The proof is as follows:

$$
\begin{aligned}
& N P V(\text { Savings })=P V_{\text {new }}\left(D S_{\text {old }}\right)-P V_{\text {new }}\left(D S_{\text {new }}\right) \\
& =P V_{\text {new }}\left(D S_{\text {old }, \text { per } \$ 100)}\right) \times P_{\text {old }}-P V_{\text {new }}\left(D S_{\text {new, per } \$ 100}\right) \times P_{\text {new }} \\
& =P V_{\text {new }}\left(D S_{\text {old, per } \$ 100)} \times P_{\text {old }}-P V_{\text {new }}\left(D S_{\text {new, }} \text { per } \$ 100\right) \times \frac{P_{\text {old }} \times \text { Costesc }}{\left(1-\text { COI }_{\text {new }}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(P V_{\text {new }}\left(D S_{\text {old }, \text { per } \$ 100)}-P V_{\text {new }}\left(D S_{\text {new, per } \$ 100}\right) \times \frac{P V_{\text {esc }}\left(C F_{\text {esc }}\right)}{\left(1-C O I_{\text {new }}\right)}\right) \times P_{\text {old }}\right. \\
& \left.=\left(\text { PRICE } \text { Bond }_{\text {old }}, \text { Rate }_{\text {new }}\right)-100 \% \times \frac{\text { PRICE }\left(\text { Bond }_{\text {old }} \text {,tocall, } \text { Rate }_{\text {esc }}\right)}{\left(1-\text { COI }_{\text {new }}\right)}\right) \times P_{\text {old }} \\
& =\left(\text { PRICE }\left(\text { Bond }_{\text {old }}, \text { Rate }_{\text {new }}\right)-\frac{\text { PRICE }\left(\text { Bond }_{\text {old }} \text {,tocall, } \text { Rate }_{\text {esc }}\right)}{\left(1-\text { COI }_{\text {new }}\right)}\right) \times P_{\text {old }}
\end{aligned}
$$

Using Excel to Estimate Refunding Savings

	A	B
1	Delivery	$5 / 14 / 2014$
2	Maturity	$5 / 1 / 2020$
3	Old Coupon	5.00%
4	New Rate	2.65%
5	Call Date	$5 / 1 / 2015$
6	Escrow Yield	0.25%
7	Call Price	100
8	COI	0.8%

$$
\begin{aligned}
& \text { NPV Savings } \%=(\\
& \quad \operatorname{PRICE}(B 1, B 2, B 3, B 4,100,2)- \\
& \quad \operatorname{PRICE}(B 1, B 5, B 3, B 6, B 7,2) / \\
& (1-B 9)) / 100
\end{aligned}
$$

Tip:
New rate is yield-to-maturity of refunding bond.

Economics of Callable Bonds

Economics and structures

 intermediate bond math (Part 2)
What Do Yields Really Mean?

Amortizing Premiums

 and Discounts:- Over time, prices drift towards the par value of the bonds (which is 100% of principal) and the premium or discount is said to "amortize"
- For an investor, the earnings is equal to the interest received plus the change in the value of the bond

Example:
Principal: \$100,000
Coupon: 4.00\%
Yield 3.50%
Date1: 5/1/2014
Date2: 5/1/2015

$$
\begin{aligned}
E & =\$ 100,000 \times(106.897 \%-107.149 \%+4.00 \%) \\
& =\$ 3,748.01 \text { o } 3.50 \% \text { of } \$ 107,149 \text { invested }
\end{aligned}
$$

What Do Yields Really Mean?

Example: Maturity: 5/1/2034	Date	Value Based on Maturity	Change in Value	Coupon Received	Total "Interest" Received	Total "Interest" / Prior Value
Coupon: 4.000\% same	5/1/2014	107.149\%				
Yield: 3.500%	5/1/2015	106.897\%	(0.252\%)	4.000\%	3.748\%	3.500\%
	5/1/2016	106.636\%	(0.261\%)	4.000\%	3.739\%	3.500\%
	5/1/2017	106.366\%	(0.270\%)	4.000\%	3.730\%	3.500\%
	5/1/2018	106.086\%	(0.280\%)	4.000\%	3.720\%	3.500\%
	5/1/2019	105.796\%	(0.290\%)	4.000\%	3.710\%	3.500\%
	5/1/2020	105.497\%	(0.300\%)	4.000\%	3.700\%	3.500\%
	5/1/2021	105.186\%	(0.310\%)	4.000\%	3.690\%	3.500\%
	5/1/2022	104.865\%	(0.321\%)	4.000\%	3.679\%	3.500\%
	5/1/2023	104.533\%	(0.333\%)	4.000\%	3.667\%	3.500\%
	5/1/2024	104.188\%	(0.344\%)	4.000\%	3.656\%	3.500\%
	5/1/2025	103.832\%	(0.357\%)	4.000\%	3.643\%	3.500\%
	5/1/2026	103.463\%	(0.369\%)	4.000\%	3.631\%	3.500\%
The bottom line:	5/1/2027	103.081\%	(0.382\%)	4.000\%	3.618\%	3.500\%
	5/1/2028	102.685\%	(0.396\%)	4.000\%	3.604\%	3.500\%
The yield is constant and	5/1/2029	102.275\%	(0.410\%)	4.000\%	3.590\%	3.500\%
equal to the rate of return	5/1/2030	101.851\%	(0.424\%)	4.000\%	3.576\%	3.500\%
after accounting for the	5/1/2031	101.412\%	(0.439\%)	4.000\%	3.561\%	3.500\%
amortization of premium	5/1/2032	100.958\%	(0.455\%)	4.000\%	3.545\%	3.500\%
amortization of premiums	5/1/2033	100.487\%	(0.471\%)	4.000\%	3.529\%	3.500\%
and discounts	5/1/2034	100.000\%	(0.487\%)	4.000\%	3.513\%	3.500\%

Yields and Callable Premium Bonds

- Prior to the call date*, stated (or nominal) yield is equal to the rate of return
- After the call date, the rate of return for each period is equal to the coupon
* More precisely, the call date to which a bond is priced.

Example:
Principal: \$100,000

Yields and Callable Premium Bonds

Example:
Maturity: 5/1/2034
Optional Call Date: 5/1/2024
Optional Call Price: 100\%
Coupon: 4.000\%
Yield: 3.500\%

Terminology: Yield to maturity is the cumulative rate of return for a bond held to maturity

Date	Value Based on Call	Change in Value	Coupon Received	TInterest" Received	Total "Interest" / Prior Value	Cumulative Rate of Return
$5 / 1 / 2014$	104.188%					
$5 / 1 / 2015$	103.832%	(0.357%)	4.000%	3.643%	3.497%	3.500%
$5 / 1 / 2016$	103.463%	(0.369%)	4.000%	3.631%	3.497%	3.500%
$5 / 1 / 2017$	103.081%	(0.382%)	4.000%	3.618%	3.497%	3.500%
$5 / 1 / 2018$	102.685%	(0.396%)	4.000%	3.604%	3.497%	3.500%
$5 / 1 / 2019$	102.275%	(0.410%)	4.000%	3.590%	3.497%	3.500%
$5 / 1 / 2020$	101.851%	(0.424%)	4.000%	3.576%	3.496%	3.500%
$5 / 1 / 2021$	101.412%	(0.439%)	4.000%	3.561%	3.496%	3.500%
$5 / 1 / 2022$	100.958%	(0.455%)	4.000%	3.545%	3.496%	3.500%
$5 / 1 / 2023$	100.487%	(0.471%)	4.000%	3.529%	3.496%	3.500%
$5 / 1 / 2024$	100.000%	(0.487%)	4.000%	3.513%	3.496%	3.500%
$5 / 1 / 2025$	100.000%	0.000%	4.000%	4.000%	4.000%	3.537%
$5 / 1 / 2026$	100.000%	0.000%	4.000%	4.000%	4.000%	3.568%
$5 / 1 / 2027$	100.000%	0.000%	4.000%	4.000%	4.000%	3.594%
$5 / 1 / 2028$	100.000%	0.000%	4.000%	4.000%	4.000%	3.616%
$5 / 1 / 2029$	100.000%	0.000%	4.000%	4.000%	4.000%	3.635%
$5 / 1 / 2030$	100.000%	0.000%	4.000%	4.000%	4.000%	3.652%
$5 / 1 / 2031$	100.000%	0.000%	4.000%	4.000%	4.000%	3.667%
$5 / 1 / 2032$	100.000%	0.000%	4.000%	4.000%	4.000%	3.680%
$5 / 1 / 2033$	100.000%	0.000%	4.000%	4.000%	4.000%	3.691%
$5 / 1 / 2034$	100.000%	0.000%	4.000%	4.000%	4.000%	3.702%

Yields and Callable Discount Bonds

Example:
Maturity: 5/1/2034
Optional Call Date: 5/1/2024
Optional Call Price: 100\%
Coupon: 3.500\%
Yield: 3.750\%

Observation:

If a discount bond is called prior to maturity, including mandatory sinking fund redemptions, the effective cumulative yield for the bondholder would also be above the stated yield

	Value Based on Maturity	Change in Value	Coupon Received	Total "Interest" Received	Total "Interest" / Prior Value
$5 / 1 / 2014$	96.504%				
$5 / 1 / 2015$	96.624%	0.120%	3.500%	3.620%	3.750%
$5 / 1 / 2016$	96.749%	0.125%	3.500%	3.625%	3.750%
$5 / 1 / 2017$	96.878%	0.129%	3.500%	3.629%	3.750%
$5 / 1 / 2018$	97.012%	0.134%	3.500%	3.634%	3.750%
$5 / 1 / 2019$	97.152%	0.139%	3.500%	3.639%	3.750%
$5 / 1 / 2020$	97.296%	0.145%	3.500%	3.645%	3.750%
$5 / 1 / 2021$	97.446%	0.150%	3.500%	3.650%	3.750%
$5 / 1 / 2022$	97.602%	0.156%	3.500%	3.656%	3.750%
$5 / 1 / 2023$	97764%	0.162%	3.500%	3.662%	3.750%
$5 / 1 / 2024$	100.000%	2.236%	3.500%	5.736%	5.868%
					$/$

Summary on Callable Bond Economics

Coupon Type	Par	Premium	Discount
Stated (Nominal) Yield	Represents actual yield	Represents yield to call date	Represents yield to maturity
Yield to Maturity	Represents actual yield	Represents worst case scenario	Represents best case scenario
Refundings	Neutral	Most likely as savings are highest	Least likely as savings are lowest; incurs "hidden" call premium
Considerations	Should be compared to pricing for "standard" premium coupon bonds	Should be avoided, if refunding in the future is unlikely; could be preferred for bonds whose rates are likely to decline in the future	Discounts can increase cost for refundings in the future; creates "hidden" cost for term bonds

Non-Callable Bonds

Economics and structures

 intermediate bond math (Part 2)
Non-Callable Bonds Simplify the Math, But not the Analysis

"Standard" Bond

- Generally 5% coupon (premium)
- Callable at par after 10 years

Non-Callable Bond

VS. - Generally, premium coupon

- Non-callable

Advantage

Effective Yield

Nominal yield $=$ yield-to-maturity

Future Refunding
 Potential to realize savings through a
 future refunding

Tax Law/Arbitrage
Allows certain remediation actions in the event of a change in use

Economic Analysis vs. "Standard" Bonds

- Recent history shows non-callable bonds have underperformed versus callable bonds
- General trend of declining interest rates
- Maturity shift for replacement bonds, when "normal" yield curve has ascending slope

30-Year Noncallable vs. Callable

CABs and Convertible CABs

Economics and structures

 intermediate bond math (Part 2)
Uses of CABs/Convertible CABs

- Deferring principal reduces nearterm debt service, but sometimes that is insufficient

- Revenue growth is projected to be steeply ascending (e.g., growth in volume and growth in price per unit volume), leaving untapped but needed bonding capacity

The Price of CABs/Convertible CABs

CIB vs. CAB Yields
(AAA GO MMD 7/25/2014)

	1		10	15	20	2530	
	Maturity	1	5	10	15	20	30
Current Interest	Yield	0.11\%	1.21\%	2.19\%	2.68\%	3.00\%	3.24\%
	Int./Prn.	0.11\%	6.05\%	21.90\%	40.20\%	60.00\%	97.20\%
CAB	Yield	0.19\%	1.56\%	2.97\%	3.68\%	4.05\%	4.39\%
	Int./Prn.	0.19\%	8.08\%	34.29\%	72.80\%	122.98\%	267.94\%

Imputing Zero-Coupon Bond Yields

Year	Principal	Coupon	Yield	Interest	D/S	Price	Proceeds	Principal	Coupon	Yield	Interest	D/S	Price	Proceeds
1	830,000	2.00\%	0.11\%	169,500	999,500	101.888	845,670	870,000	2.00\%	0.11\%	128,050	998,050	101.888	886,426
2	845,000	3.00\%	0.31\%	152,900	997,900	105.359	890,284	885,000	3.00\%	0.31\%	110,650	995,650	105.359	932,427
3	870,000	4.00\%	0.54\%	127,550	997,550	110.282	959,453	915,000	4.00\%	0.54\%	84,100	999,100	110.282	1,009,080
4	905,000	5.00\%	0.87\%	92,750	997,750	116.201	1,051,619	950,000	5.00\%	0.87\%	47,500	997,500	116.201	1,103,910
5	950,000	5.00\%	1.21\%	47,500	997,500	118.334	1,124,173	1,000,000	0.00\%	1.26\%	0	1,000,000	93.926	939,257
Total	4,400,000			590,200	4,990,200		4,871,199	4,620,000			370,300	4,990,300		4,871,099

It is possible to calculate the theoretical yield of a CAB structure, based on current interest bond rates

1 Based on two structures that differ by either including or excluding CABs in the last maturity
2. Principal amortizations are solved to create equal debt service

3 Proceeds of all CIBs are calculated, with the price of the CAB determined to result in equal total proceeds for the two structures

4 CAB's Yield can be calculated from the resulting price

Current Interest vs. CAB Bond Yields

Compounded Rate of Interest

- CAB investors prefer long maturity structures
- Interest penalty also rise with longer maturities
- Additionally, CABs are generally non-callable making the commitment to pay interest irreversible

Bonus: Valuing Call Options

Economics and structures

 intermediate bond math (Part 2)
Three Basic Approaches...

and Some Hybrid Approaches

Refunding Efficiency
What:
NPV Savings
NPV Savings + Negative Arbitrage)
When: Advance refunding
Why: ALL rates can be known

Option Valuation Model

What:

Use models to project future interest rates, calculate savings and formulate as single PV value

When:
Consider multiple alternatives
Why:
Represents "market" perspective based on ability to hedge against future interest rates

Breakeven Analysis

What:

Find future interest rate at which refunding of two alternatives result in equivalent result

When:

Consider two alternatives, such as advance refunding and coupons

Why:

Results are easy to understand and rely very little on assumptions

> Alternate Refunding Efficiency Calculation

What:

NPV Savings

Option Value

Evaluate Breakeven as Probability using Current Market Metrics
What: Calculate probability that breakeven rate would be realized based on forward rates and volatilities

What:

Calculate probability that breakeven rate would be realized based on forward rates and volatilities

Refunding Efficiency Calculation

- Can follow same approach as estimating NPV savings (see slides 10 and 11)
\checkmark Negative arbitrage is defined as the difference in escrow cost when investing at "new rate" versus at escrow yield

	A	B
1	Delivery	$5 / 14 / 2014$
2	Maturity	$5 / 1 / 2020$
3	Old Coupon	5.00%
4	New Rate	2.65%
5	Call Date	$5 / 1 / 2015$
6	Escrow Yield	0.25%
7	Call Price	100
8	COI	0.8%

How Option Valuation Models Work

- A model generates future interest rates at different points in time
- NPV savings are calculated for each rate and at each time
- The value at each node is calculated as follows:

$$
\begin{aligned}
& \mathrm{NPV}^{1}{ }_{m . n}=\max \left(\mathrm{NPV}_{m . n} \mathrm{n}^{\prime}\right. \\
& \left.\quad \text { average }\left(\mathrm{NPV}^{1}{ }_{m+1 . . n^{\prime}} \mathrm{NPV}^{1}{ }_{m+1 . n+1}\right)\right)
\end{aligned}
$$

, where NPV is always $>\$ 0$

- Option value is equal to $\mathrm{NPV}^{1}{ }_{1.1}$
- Results are very dependent on how interest rates are modeled

Two Steps in a Breakeven Analysis

- Step 1: Find the future refunding interest rate (a.k.a., the breakeven rate) at which the economics of the two alternatives would be equivalent
- Steps 2: Determine whether or not the future rates would likely be above or below the breakeven right

Method	Compare vs. Current Rate	Compare vs. Interest Rate History	Assess Refunding Savings
How	Calculate difference between breakeven rate and current rate; is the amount of change likely?	Compare breakeven rate vs. historic distribution of interest rates; how often has rates been lower?	Calculate \% NPV savings for breakeven refunding; is savings level realistic to achieve?
Why	Best for assessing near-term alternative; accuracy of interest rate outlook is more reliable	Appropriate for long-term alternative	Advance refunding would lock in savings early; chance can be measured using "personal" history
Example	Breakeven rate is +150 bps from current over 6 months	Breakeven rate is in 80th percentile	Breakeven NPV savings is 2.78%

Questions?

Thank you for your participation!

