CALIFORNIA
DEBTAND INVESTMENT
ADVISORY COMMISSION

THE PUBLIC INVESTMENT PORTFOLIO: INVESTING IN TREASURIES

KENT MORRIS, CHIEF INVESTMENT OFFICER, CITY OF SAN DIEGO KEVIN WEBB, CFA, DIRECTOR, CANTOR FITZGERALD

Disclaimer

The information presented in this webinar series is intended to assist public investment professionals. The content presented is informational and does not constitute investment advice or the recommendation to invest in any or all of the investment instruments discussed. When choosing an investment instrument for a public portfolio, the whole portfolio, investment policy, suitability, financial needs of the public agency and any associated risks should be considered. In addition, the information in each webinar is set to reflect the period in time in which it is presented and any changes that may affect any of the instruments discussed, such as legislation, reform or market conditions, or that may alter the relevancy of any of these webinars, will not be reflective in the post archival recordings. In such instances, viewers should be advised to use the information only as a reference as no updates to the recordings will be made. Please consult the California Debt and Investment Advisory Commission's publication Local Agency Investment Guidelines for any interpretive updates.
\square In 1790, Congress passed a law that had the Federal Government assuming State debts

Federal Debt held by the public as a percent of GDP (1790-2013)

A Brief History of U.S. Treasury Deb†

\square In 2000, the U.S. debt level was \$5.7 Trillion
a In 2014, it was \$17.8 Trillion
\square In 1929, U.S. Treasury shifted to auction process for T-bills

- In 1959, regular issuance of 26 week and 1 year bills
\square In 1963, the competitive bidding on Treasury Bonds was first introduced for dealers and banks
\square In 1974, Cash Management bills were introduced
\square In 1979, Book-entry form was required for all Treasury bills issued
\square In 1982, Bearer form was eliminated for New Treasury notes and bonds

Bond Basics (Vocabulary)

\square Term to Maturity: number of years over which the issuer has promised to meet the conditions of their obligation
\square Par Value: The amount that the issuer agrees to repay the bondholder by the maturity date.

- A bond with a par value of $\$ 5,000$ is selling at $\$ 5,500$ the bond is said to be selling for 110
\square Coupon Rate: the interest rate that the issuer/borrower agrees to pay each year.
- Semi-Annual Coupon Payment: the interest for a bond with a par value of $\$ 1,000$ and a coupon rate of 7% would be ($1,000 \times .07 / 2$) $\$ 35$ every six months.
- Fixed Rate - The coupon rate does not change over the life of the bond
- Variable Rate (Floating Rate) - has a coupon that periodically resets according to some reference rate.
- Reference rate +/- Quoted Margin (i.e. 3 month Libor + 15 basis points) The quoted margin is the amount that the issuer agrees to pay above or below the reference rate.

Bond Basics (Issue Types)

\square On The Run - name given to the most recently auctioned issue or current issue

- Most liquid
- Tighter bid/ask spread
- More demand to be in current issue
\square Off the Run - Security that is replaced by the on the run issue
- Slightly wider bid/ask spread
- Still very liquid
\square When Issued - a trade based on a security that has been announced, but not yet issued

The Basics of U.S. Treasury Securities

\square Issued by the U.S Department of the Treasury

- Has the Full Faith and Credit of the U.S. government
- All securities are issued through an auction process
- Bills: 1 M, 3M, 6M, 1 year
- Notes: 2, 3, 5, 7, 10 year Floating Rate (2 year)
- Bond: 30 year
\square Two types of Treasury Securities
- Discount: Issued at discount to par value, no coupon, and mature at par value
- Issued at a price of 99 and then matures at 100
- U.S. Treasury Bills
- 1 day to 1 year
- Fixed Rate: issued at approximately at par, have a coupon rate, and matures at par value
- Maturities range from $2,3,5,7,10,30$ years
- Auction determines the coupon rate

The Basics of U.S. Treasury Securities

\square Treasury Inflation-Protected Securities (TIPS)

- Effective way to eliminate inflation risk
- Principal is adjusted for inflation by a CPI index
- Still has a semiannual coupon
- Coupon applies to the inflation adjusted principal
- Amount at maturity will be based on inflation adjusted amount
- New issues price are determined by auction
\square Must have time forecast inflation
\square Be careful of final maturity if buying at auction

When Do TIPS Make Sense

(5 year breakeven rates)

The Basics of U.S. Treasury Securities

\square What is a U.S. Treasury STRIPS?

- Separate Trading of Registered Interest and Principal of Securities aka STRIPS (1985)
- The interest and principal cashflows of a U.S. Treasury Bond as separate Securities

■ U.S. Treasury Coupon STRIPS

- Contains only the coupon payments of the associated Treasury Bond

■ U.S. Treasury Principal STRIPS (aka "Zero coupon" security)

- Contains only the principal payment of the associated U.S. Treasury Bond
- Sold at a discount and matures to Face Value

How are STRIPS Created?

\$1 million Par of the $\mathbf{3}$ year Treasury Note, 5\% coupon

(Cashflows for 3 year Interest payment STRIP)

$$
\mathrm{T}=0
$$

Characteristics of Treasury Securities

\square Seen as risk free

- No default risk
- Heavily purchased during times of crisis and uncertainty
\square No credit risk
- Full faith and credit of U.S. Government
\square Very liquid
- Visible in the small (Bid/Ask) spread
\square Benchmark for interest rates around the world
\square Still has interest rate risk
- Be mindful of a bond's duration

Understanding Price \& Yield

\square Time Value of Money Circle of Life \square What is Price?
\square What is Yield?
\square Treasury Price/Yield Information

Framework for Understanding...

"The Theory of Economics does not furnish a body of settled conclusions immediately applicable to policy. It is a method rather than a doctrine, an apparatus of the mind, a technique of thinking, which helps its possessor to draw correct conclusions." - John Maynard Keynes
[H.D. Henderson, Supply and Demand (New York: Harcourt, Brace and Company, 1922), v.]

The Treasury Yield Curve Framework

<HELP> for explanation.

Time Value of Money Circle of Life

Compounding

Present
Value

Future
Value

Discounting

Time Value of Money Math

$\mathrm{FV}=P V^{*}(1+\mathrm{i})^{\wedge} \mathrm{n}$

"The basic valuation equation is the foundation of all the financial mathematics that involves compounding, and if you understand this equation, you understand most everything in financial mathematics: where: FV = the future value $P V=$ the present value $i=$ the rate of interest $n=$ is the number of compounding periods"

Peterson Drake, Pamela; Fabozzi, Frank J. (2009-07-30). Foundations and Applications of the Time Value of Money (Frank J. Fabozzi Series) (Kindle Locations 316-318). Wiley. Kindle Edition.

Time Value of Money Circle of Life

Compounding

Present

$$
P V=F V /(1+i)^{\wedge} n
$$

Future

$$
\mathrm{i}=(\mathrm{FV} / \mathrm{PV}-1)^{\wedge}(1 / \mathrm{n})
$$
 Value
 Value
 $$
F V=P V^{*}(1+i)^{\wedge} n
$$

Discounting

Price vs Yield: Which Came First?

Price \& Yield Relationship

Price / Yield Relationship

Question

Answer

The price of the bond will go down because the interest rate used to discount the cash flows (the yield) is higher. The higher yield makes the present value of the future cash flows lower; therefore making the price lower.

Treasury Yield Data Sources

* US Department of the Treasury:

1. http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/Historic-Yield-Data-Visualization.aspx
2. http://www.treasury.gov/resource-center/data-chart-center/interestrates/Pages/TextView.aspx?data=realyield
3. http://www.treasury.gov/resource-center/data-chart-
center/Pages/index.aspx

* Yahoo Finance:
http://finance.yahoo.com/bonds/composite bond rates
* Wall Street Journal Market Data Center:
http://www.wsi.com/mdc/public/page/mdc bonds.html
* Wolfram Alpha:
http://www.wolframalpha.com/input/? $\ddagger=t r e a s u r y+y i e l d+c u r v e$
* Bloomberg US Treasury Yields:
http://www.bloomberg.com/markets/rates-bonds/government-bonds/us

Primary Risks Associated with Bonds

\square Interest Rate Risk: The risk that bond prices will fall as interest rates rise.
\square Reinvestment Risk: The risk that proceeds from the bond will be reinvested at a rate lower than the yield when purchased.
\square Call Risk: The risk that a bond with a call provision will be called (redeemed before the stated maturity date) by the issuer.
\square Default Risk: The risk that the bond issuer will be unable to pay the interest and principal as promised.

Interest Rate Risk: Duration

The Price-Yield-Duration Connection

Price / Yield Relationship

Duration \& Final Maturity

Duration Rises as Maturity Increases

Duration \& Coupon Rate

Duration Falls as Coupon Rate Increases

Duration \& Yield

Duration Falls as Yields Rise

Excel'ing @ Bonds!

Wolfram Alpha Duration Calculator

Calculate modifed duration	
- settiement dete:	4/30/2015
- maturity date:	4/30/2020
- annual y yeld:	1.434
- annual coupon rase:	1.375
- coupon frequency	Steri-anuil *
* day count convention:	actualachuel

Assurning modfried duration |USe Mocsulay durator instead

input information:
bond duration settlement date Thursday, April 30, 2015 maturity date Thursday, April 30, 2020 annual yield 1.434% annual coupon rate 1.375% coupon frequency semi-annual day count convention actual/actual

Results:

modified duration	4.814
convexity	$0.2602 \mathrm{yr} / \%$ (years per percent)

Calcidete moditied duration	
* settiement date:	4/30/2015
* maturity date:	4/30/2020
* annual yleld:	2.434
* annual coupon rate:	1.375
- coupon frequency.	semidinvial v
- day count convention:	actuilactual ${ }^{\text {\% }}$

Assuming modited duration | Use Macautay dirstion instead

Input information:

bond duration	
settlement date	Thursday, April 30, 2015
maturity date	Thursday, April 30, 2020
annual yield	2.434%
annual coupon rate	1.375%
coupon frequency	semi-annual
day count convention	actual/actual

Results:

modified duration	4.786
convexity	$0.2573 \mathrm{yr} / \%$ (years per percent)

California Government Code 53601

"(b) United States Treasury notes, bonds, bills, or certificates of indebtedness, or those for which the faith and credit of the United States are pledged for the payment of principal and interest."

CA Government Code 53601 Guidelines

Investment Type	Maximum Maturity ${ }^{\text {C }}$	Max Specified \% of Portfolio ${ }^{\text {D }}$	Minimum Quality Requirements
U.S. Treasury Obligations	5 Years	None	None

C Section 53601 provides that the maximum term of any investment authorized under this section, unless otherwise stated, is five years. However, the legislative body may grant express authority to make investments either specifically or as a part of an investment program approved by the legislative body that exceeds this five year maturity limit. Such approval must be issued no less than three months prior to the purchase of any security exceeding the five-year maturity limit.

D Percentages apply to all portfolio investments regardless of source of funds. For instance, cash from a reverse repurchase agreement would be subject to the restrictions.
\square Match your risk profile
\square Provides diversifications

- Lower volatility
- Increased liquidity
\square Helps manage credit risk exposure
\square Passive Investment strategy
- Passive or enhanced indexing to Treasury benchmark
\square Active Investment strategy
- Relative value opportunities
- Market timing

Relative Value

(2 year Fannie Mae Note vs 2 year Treasury Note)
May 2001 - December 2001

Market Anomalies

(Looming Government Shutdown 2013)
1 month T-Bill Rates (January 2013 - September 2014)

QUESTIONS

Public Investment Webinar Series: The Public Investment Portfolio

Webinar 2: Agencies June 17
Webinar 3: MunicipalsJune 24
Webinar 4: Money Markets
Part 1: Banker's Acceptances, Commercial Paper July 8
Part 2: CDs, Deposit Placement Services and July 22Collateralized Bank Deposits
Part 3: Repurchase Agreements, Reverse Repos August 5and Securities Lending
Webinar 5: Corporates August 19
Webinar 6: Asset-Backed Securities, Mortgage-Backed Sept 2Securities and Collateralized Mortgage ObligationsWebinar 7: Mutual Funds, Money Market Mutual FundsSept 16and Local Government Pooled Investments

For more information or to register, go to

